

Practical AI: Definitions, Concepts, & Techniques

Lee Solomonson | December 2024

Director of Advanced Technologies lee.solomonson@nth.com

WELCOME!

The webinar will begin shortly.
We are waiting for everyone to load.

Before We Begin...

- Microphones have been muted mics will open at the end.
- Please use the Q&A function for questions you would like to see addressed.
- Slides will be provided.
- This is an educational event focused on the technical concepts and techniques around AI. Specific solution offerings will be introduced, with in-depth explanations offered at a later date.

Course Outline

Section 1

- AI/ML/DL
- Deep Learning Phases (Explore/Deploy/Apply)
- Predictive AI vs. Generative AI
- Functions and Use Cases

Section 2

- What is a Neural Network?
 - Networks and Architectures
 - Neurons, Weights, Bias, Activation
 - Matrix Multiplication
- Model Training Overview

Section 3

- Model Selection & Sources
 - Quantization

Section 4

- Model Deployment
- Applying Model
 - Prompt Engineering
 - Retrieval Augmented Generation (RAG)
 - Foundational Models
- Getting Started

Poll: What is your experience level?

Taxonomy

Predictive AI

N

Generative AI

My name is Chatty McChatterson

"You shall know a word by the company it keeps."
--J.R. Firth, 1957

It is windy outside.

The road is windy outside of town.

What is your name?

My Name is Chatty McChatterson

what is 397652 X 1.5342?

[3923, 374, 701, 836, 1980, 5159, 4076, 374, 921, 23758, 45 84, 1163, 1617, 1293, 271, 12840, 374, 220, 20698, 23181, 1 630, 220, 16, 13, 22467, 17, 30]

https://tiktokenizer.vercel.app

Al Functions

INPUT DATA

EXAMPLES OF OUTPUT BY INDUSTRY

Ask an interesting business question	Identify the appropriate DL task
Is 'it' present or not?	Detection
What type of thing is 'it'?	Classification
To what extent is 'it' present?	Segmentation
What is the likely outcome?	Prediction
What will likely satisfy the objective?	Recommendation

•••	
Text	

Healthcare	Retail	Finance
Cancer Detection	Targeted Ads	Cybersecurity
Image Classification	Basket Analysis	Credit Scoring
Tumor Size / Shape Analysis	Build 360° Customer View	Credit Risk Analysis
Survivability Prediction	Sentiment & Behavior Recognition	Fraud Detection
Therapy Recommendation	Recommendation Engine	Algorithmic Trading

Generative AI Use Cases

Intelligent Chatbot

Focus is on question-and-answer tasks.

Ex. Customer Service Agent, Brand Ambassador, Help Desk

Knowledge Base Copilot

Connects to knowledge bases performs tasks such as writing, coding, generating images, etc.

Ex. Documentation Copilot, IT Bugs Assistant, Field Agent Copilot

Code Generation

Help develop or troubleshoot code based on natural language. Can work across common languages or be proprietary languages.

Ex. GitHub Copilot, ChatUSD, Software Development Assistant

Multimodal Conversion

Demonstration

Up Next: Anatomy of a Neural Network

Artificial Neural Network

Artificial Neural Network	Description/Purpose	Typical LT
Convolutional Neural Networks (CNNs)	Classification & Recognition	Supervised
Recurrent Neural Networks (RNNs)	Sequential Patterns	Supervised
Transformer Networks (LLM)	Comprehension of Context	Semi-Supervised
Generative Adversarial Networks (GANs)	Competing ANNs (Generator & Discriminator)	Unsupervised & Semi-Supervised
Diffusion Model	Forward Diffusion & Reverse De-Noise	Semi-Supervised

House on Fire?

Neurons, Weights, and Biases

 $w_4 = 10$

w ₁ * I	w ₂ * I	w ₃ * I	w ₄ * I	bias	value	result
Teeth	Keys	Hat	Fire			
3	3	1	0	-5	2	active
3	0	1	0	-5	-1	inactive
0	0	0	10	-5	5	active
3	3	1	10	-5	12	active

For each output node:
multiply weight and input value,
add the weighted inputs together,
add bias to sum
pass results through activation function

Matrix Multiplication

$$w_{11} \times input_1 + w_{12} \times input_2 + w_{13} \times input_3$$

 $w_{21} \times input_1 + w_{22} \times input_2 + w_{23} \times input_3$
 $w_{31} \times input_1 + w_{32} \times input_2 + w_{33} \times input_3$
 $w_{41} \times input_1 + w_{42} \times input_2 + w_{43} \times input_3$

For each output node:
multiply weight and input value,
add the weighted inputs together,
add bias to sum
pass results through activation function

Preparing the Model

- Labeling
- Missing/Incorrect Data
- Normalization/Standardization
- Augmentation
- Split Train / Validate / Test

- Hyper Parameter Adjustments
- **Pre-Trained Model Selection**

Customizing LLMs

Fastest

Fastest Time to Adoption

Slowest

Less Customization

- Generative AI as a Service ChatGPT, Google Bard, Amazon Bedrock, Existing Services
- · Consumption model, \$ per inference
- Fastest time to market

Moderate Customization

- · Fine tuning of pre-trained model
- \$M+ for infrastructure and resources
- · Weeks to months for development

Extensive Customization

· Custom foundation models or extensive fine tuning

Potential Value of Insight

- \$10M+ for infrastructure and resources
- 6+ months for development

Longest training cycles

Least Difficult

Shortest (or no) training cycles

Level of Difficulty to Develop & Deploy LLMs

Most Difficult

NTH

Improving Insights

Up Next: Sourcing Foundational Models

Model Selection

Model Repository Features:

- **Model Card**
- Live Interface
- **Code Examples**

Key Terminology:

- Context Window / Length
- Parameter
- Quantization
- Licensing

https://tiktokenizer.vercel.app

Quantization

Floating Points:

$$ext{value} = (-1)^{ ext{sign}} imes 2^{(E-127)} imes \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}
ight)$$
Equation source: Wikipedia

FPvalue =
$$(-1)^{sign} * 1.[fraction] * 2^{[exponent]-(highBit - 1)}$$

3.1416 = $(-1)^0 * 1.[5708] * 2^1$

More Exponent Bits = Larger Range
More Fraction Bits = Greater Precision

Acroyms:

NeMo (Neural Modules)
ONNX (Open Neural Net Exchange)
GGUF (GPT-Generated Unified Format)
PTQ (Post Training Quantization)
QAT (Quantization-Aware Training)

NTH

Licensing

This is not legal advice

Weighing Options

Cost
Precision
Speed
Size & Scalability
Ease of Use

Up Next: Putting AI Models to Work

Prompt Engineering

Prompt Template prompt = f""" {role} {context} {instruct}

Few-Shot

instruct = """

Classify this comment:
Awesome presentation!

Sentiment: Positive

Classify this comment:
What a waste of time!
Sentiment: Negative

Classify this comment:

{input}

Sentiment:"""

Role Prompt

role = """You are an event planner
reviewing audience feedback from a
survey taken after a technical
presentation"""

Context

context = """Other relevant info"""

Prompt

You are an event planner reviewing audience feedback from a survey taken after a technical presentation

Other relevant info

Classify this comment:

Awesome presentation!

Sentiment: Positive

Classify this comment:
What a waste of time!
Sentiment: Negative

Classify this comment:
I can't wait to get started
Sentiment:

Retrieval Augmented Generation (RAG)

Key Benefits:

- Minimize Hallucinations
- Current Data
- Citing Sources

Copilot for Microsoft 365

One Drive

E-mail

SharePoint

Teams Chat

Semantic Indexing

Acceptable Use Policy (AUP)

LLM Considerations – On-Prem vs. External

Getting Started

Prerequisits:

- Code Editor (VS Code)
- Access to a GPU (Eventually)
- Python Proficiency
- Project Ideas
- Commitment of Time

Python Module	Purpose
Jupyter Notebooks	Experimenting
NumPy	Number Matrix
Pandas	Tabular Data
OpenCV	Visual Data
Flask / Gradio / Streamlit	User Interface

Web Resources:

General		Data Science		Model Deploy		LLM Frameworks	
Google	G	colab.google	CO	ai.nvidia.com		LangChain	
YouTube		Kaggle	k	huggingface.co		LlamaIndex	
Coursera	C	Fast.ai		Ollama			

Nth University: AI Curriculum

Practical AI: Definitions, Concepts, and Techniques

Applied AI: Putting AI to Work

Deployed AI: Run & Maintain Inferencing Services

Practical AI:

Al Taxonomy Predictive Al / Generative Al Neural Network Overview Model Sourcing & Sizing

- NVIDIA
- Hugging Face
 LLM Inferencing Techniques
 Getting Started

Applied AI:

Development Environment

- VENV / Jupyter
 Model Serving
- NVIDIA NIM
- vLLM

User Interface

• Gradio / Streamlit

LLM Tools

- LangChain / LlamaIndex Data Retrieval (RAG)
- Data Chunking
- · Embedding Model
- Vector Database

Deployed AI:

GPU Drivers / Prep

Bare Metal

Virtual Machine

- VMware
- KVM

Docker

- Install
- GPU Toolkit
- Basic Commands

Kubernetes

Ecosystem Solutions

Review of Use Cases

Video Analytics

- Perimeter Surveillance
- Intrusion Detection
- Vehicle Identification / License Plate Reader
- Manufacturing Quality Control

Large Language Models (LLMs)

- ChatBot Assistant
- Code Generation
- Content & Image Creation
- Sentiment Analysis
- Text Translation and Summarization

Multi-Modal

- Image to Text
- Text to Image
- Speech to Text
- Text to Speech
- Video to Text
- Text to Video

NTH

Poll: How Can Nth Help?

Conclusion Q & A

